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A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES 1

By MAXCEL STEIX and J. MAYERS

SUMMARY

A wnallde$ection theoy thattakeg into account deformations
due to tranwerse shear is pre8ented jor the e[a8tic-behaL%ior
analysis of orthotropicp[ate~ of corwtantcylindn”cal currature
with corwidemtions of buckling included. I%e theory is
applicable primarily to 8andwich construction.

INTRODUCTION

The usual sandwich pIate as used in aircraft construction
consists of a light-weight, low-atiffness core material bonded
or riveted between two high-stiffness cover sheets. The
eIastic behavior of such pIates under loading cannot be
anaIyzed by conventional plate and shell theories in generaI
since these theories neglect deformations due to transverse
shear, an effect which may be of great importance in sand-
wich construction.

Ifany authors lm.veconsidered transverse shear deflections
in anaI@ng the elastic behavior of flat sandwich pIates by
means of smalldeflection theories (see, for exampIe,
references I to 4]. Most of this work has been concerned
with sandwich plates of the isotropic type (for example,
Mehdite, ceIIuk<eIhdosc+acetate core). In reference 3,
however, sandwich plates of the orthotropic type are also
considered (for example, corrugated core).

The treatment of cumed sandwich plates in the
Literature has not been as general as that accorded flat
sandwich plates, although several specitic studies of the
curved isotropic sandwich pIate have been pubIished. These
studies have covered (a) simpIy supported, slightly curved
iswtropic sandwich plates under compressi~e end Ioading
(reference 1), (b) axially symmetric buckling of a simply
supported isotropic sandwich cylinder in compression
(reference 1),and (c) a nonbuckling snddeflection theory
for isotropic sandwich sheik which takes into account not
only deflections due to shear but aIso the effects of com
compression normaI to the faces (reference 5).

The need for a general theory for cumed sandwich plates
which is applicable to orthotropic as well as isotropic t-ypes
and which includes both nonbuckling and buckling effects has
Ied to the development of the theory presented in this report.
This theory, which takes into account deflections due to

transverse shear, covers those types of sandwich pIates
having constant cyIin&lcaI curvature, similar properties on ~
the average above and below the middle surface, and
essentially constant core thlclmess.

SYMBOLS

D, flemral stiflness of isotropic sandviich pIate,

D flexural stiffness of ordinary plate, inch-pounds
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fle&r~ stikrie-s of orthotropic pIate in axial
and circumferential directions, inch-pounds

twisting stiffness of orthotropic plate in
zy-pIane, inch-pounds

transverse shear stiffnesses of orthotropic
plate in axial and circumferential directions,
pounds per inch

transverse shear stiEnessof isotropic sandwich
pIate, pounds per inch

Young’s modulus for ordinary plate, pounds
per square inch

Young’s moddus for faces of isotropic sand-
vrichpIate, pounds per square inch

extensional stifhess of orthotropic plate in
tial and circumferential directions, pounds
per inch

shear stifTnessof orthotropic p~atein W-plane,
pounds per inch

v, w, V-4 mathematical operators defied
in section entitled “Theoretical Derivations”

bending moments on plate cross sections
perpendicular to z- and y-axes, respeoti~ely,
inch-pounds per inch

twisting moments on cross sections perpendic-
ular to z- and y-ayes, inch-pounds per inch

resultant normal forces in x- and y-directions,
pounds per inch

resultant shearing force in ~-phme, pounds
per inch

lateral loading, pounds per square inch
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Q,, Q, resultant shearing forces in yz-plane and
u-plane, respectively, pounds per inch

h depth of isotropic sandwich plate measured
between middle surfaces of faces, inches

r constant radius of curvature of plate, inches
t thicknessof ordinary plate, inches
t, thickness of face of isotropic sandwich plate,

inches
?L,v , ‘w displacements in z-, y-, z-directions, respec-

tively, of a point in middle surface of
plate, inches

x, V,z rectangular coordinates
‘YSv shear strain in zy-piano
E*,Ey normal strains in axial and circumferential

directions
P Poieson’s ratio for ordinary plate
k, Pv Poisson’s ratios for orthotropic plate, defined

in terms of curvature9
Ptz}Ptv Poisson’s ratios for orthotropic plate, defined

in terms of normal strains

THEORETICAL DERIVATIONS

GENERAL THEORY

In developing the equations of equilibrium for the ortho-
tropic curved plate element, shown in figure 1, the basic
assumptions made are that the materials are elastic, that the
deflections are small compared with the plate thickness,
and that the thickness is small compared with the radius of
curvature. The last assumption impIies that the shear
forces N- and Nw are equal and that the twisting moments
M.v and Mw are equal.

Eleven bask equations.-As in ordinary curved-plate
theory, 11 equations exist for orthotropic curved plates
(considering deflections due to shear) from which the dis-
placements acting in the plate can be determined. The 11
equatione consist of 5 equilibrium equations, 3 equations
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FIOUREI.—Fcqcesand monrmis ecttng on carved plate element.

relating resultant forces to strains, ftml 3 equation9 relating
resultant moments with curvatures and twist.

The first five equations, expressing force equilibrium in
the z- and y-directions, moment equilibrium about the z-
and ~-axes, and force equilibrium in the z-direction, ar~

bN.+bNw_o—_
a2. a~

aNv aNzv=o

?%!+——
ax

a aMz+ aiw=,=~—— —
ax a~

Q++a:=o —_

%+%?+Nz%+N++%)+2N‘1’)

(i a)

(lb)

(lC)

(Id)

It should be noted that in these equations, h~her+rdcr
terms have been neglected in accordance with considerations
similar to those of referenco 6.

For the orthotropic curved plate, the relations between
the resultant middle-surface forces md the midclle-surface
strains are (see appendix)

(2a)

(Zb)

(2C)

From reference 3, the corresponding relations bctwccn
resultant moments and curvatures and hi%t me

(3a)

(N.))

( 1 aQv

)

1 aQ=
M.=; D.fl 2 =–— —–——

ax a~ DQn ax Do= iW (3C)

Equations (l), (2), and (3) are the 11 basic equations nccea-
sary for determining’ the forces, moments, and deflectione
acting in the plate. The number of equations can be reduced
to five, however, by substituting equations (2) and (3) into
equations (1). In this manner, five diHerent-ialequations arc
obtained for determining the resultant transwerswshear
forces Q. and Q? and the disphtcementsu, q and w.
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The 11 basic equations presented are not restricted to &-
tkction probIems idone but maybe app~iedto buckling prob-
Iems as well by considering the changes that occur during
budding and modifying equations (1) accordingly. For
equilibrium of the curved plate element after budding,
equations (1) can be written with AL, A&, Nv, Q, Qr,iv.,
M=, M,, and WY replaced by A’%+A&, N~o+iV..,, “ “ -,
wO+W1,respectively, where the subscript O refers to vahwa
prior to buckling and the subscript 1 refers to changes in
these -ialues that occur during buckling. For equfibri~
of the curved plate eIement prior to buckling the following
equations appIy:

Subtracting the previous equations from equations (1)
(as modified) gives the following equilibrium equations which
apply to buckling probIems:

aNq ~aiv.l—_
ax a~ ‘0

N,,
[ 1

1 awOo+tOJ +2Nwo
;+ @,

In equation (4e) the terms N.l

(4a)

(4b)

(413

(4d)

(4e)

may be neglected since they will be smafi compared with
a~~ t% @wl

K.. -# .\’.. J> and A?wo
ay~

—. AIao, if the deflection
ax ~

prior to buckling is zero or constant as occurs for many
problems (for emmpIe, axiaI compression, hydrostatic pres- “““
sure), alI derivatives of WOvanish. For this type of problem
equation (4e) becomes

(4e’)

The six equations relating changes in middle-surface re-
suknt forces with buclding strains and changes in moment
with buckling distortions are identical with equations (2)
and (3) with the subscript 1 added to N*7 N-, .VH,Q=, (?U,
M=, M=,, Mu, u, P, and w.

The 11 equationa, given by equations (4) and equations
(2) and (3) (with subscript 1), apply to buckling problems
in generaI (with equation (4e) or (4e’) as required) and can
be used to obtain the critical values of the loads acting on
the pIate. As is shown in the next section, however, for the
case in which the deflection prior to buckling is zero or con-
stant, the 11 equations can be suitably combined to yield 3
equations in WI, Qz,, and QMI,a form convenient for applica-
tion to plates of sandwich construction.

Reduction to three equations for buckling problemz in ‘
which the deflection prior to buckling is zero or constant.—
The reduction of the 11 equations to 3 equations in WI, Q.l,
and Qr, is achieved in several steps as follows:

By differentiating equation (4c) with respect to x, equa-
tion (4d) with respect to y, and adding the results to obtain
the relationship

equation (4e’) maybe rewritten as

(4e”)

Next, equations (2) and (3) (with subscript 1] are substituted
into the equilibrium equationa (4a) to (4d) and @e”) to give
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where LD is the linear differential operator defined by

At this point, six equations have been eliminated and, there-
fore, five equations remain-equations (5), (6), (7), (8), and
(9) in u,, 0,, ‘w,, G&,~d Qvl.

A further reduction in the number of equations and un-
knowns is effected by fist solving equations (5) and (6) to
obtain relations from which U1and w1 can be determined
and then substituting for U1and VI in equation (9). The
expressions obtained by solving equations (5) and (6), in
accordance with the rules governing the multiplication of
linear operators, are

where L~ is the linear diilerential operator deflncd by

The relationships given by equations (10) and (11) may
be written in a form more suitable for substitution into
equation (9) by difkmmtiating equation (10) with respect
to x, equation(11) -withrespect ta y, and then, symbolically

au, a~leching the equations for ~ and —? respectively, to givea~

where LB-l is deilned by L~-l(Lw1) = LB(Lg-lwJ = WI. The
inverse operator LE-l is similar to the inverse operator V-4

defined in reference 7, and, as is shown subsequently, L-’
reduces to V-4 for the special case of the isotropic plnte.

Substituting the expressions for ~ and $ from equations

(12) and (13) into equation (9) rmd replacing :1 by

()
L~-l L~$ results in the following equation:

At this stage, the original 11 equations have km reduced
to the 3 equations (14), (7), and (8), in the 3 unknowns
WI?&l, and Qwl.

For most problems, equations (14), (7), rmd (8), together
with proper boundary conditions, can determine the elastic
stability criteria for an orthotropic curved plate subjectcd to
middle-surface loadings. It should be noted, however, thwt
the three equations are not sufficient if bounchwy conditions
are specfied on the displacements U1and q. For boundary
conditions on U1and tiI, as well as wI, equationa (10) and
(11) must also be employed. When boundary conditions
are not specified on u] and o~ (the case when only equations
(14), (7), and (8) are used), certain boundary conditions arc
implied, nevertheless, by equations (10) and (11), consistent
with the exprewion for WI. A discussion of similar impIiccl
boundary conditions on U1and WIis included in reference 7.

SPECIAL CASESOFBUCKLING EQUATIONS

Isotropic curved sandwich plate with non-direct-stress-
mrrying oore,—For the isotropic sandwich pl~te with non-
direct-stress-carryirg core, the physical constants bear the
following relationships to those of the orthotropic plate:

DQ==D~ti=DQ

pppv=pf==p~v=p

DFD,=D,(l –p~

D~D,(l–p)

E?E,= 2E,t,

~ = E8t,
‘u l+N

These reIationahipspermit equation (14) to be simplified as
follows:

(15)
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and V-b is defined by V-a (V4WJ=V*(V–4WJ= wI.

In this case, however, equations (7) ~d (8) me ~t needed
bQzl bqvl

to obtain the quantity ~+w since this quantity can

be found more conveniently from equation (4e’). From
equation (4s’), therefore,

aQvl .
Substituting for g+ ay— m equation (15) gives

The term –N.Jr, which appears in equation (14) for the
(2. a~~l

orthotropic plate as ~ L~-l —az4 > reduces to ~V-4~

for the case of the isotropic pIate. H this resuIt is used in
equation (16), the equation of equilibrium for the isotropic
curved sandwich plate with nondirect-stres-carr.ying core
becomes

“~’4”’+(1-+tv2)l?+v-4%-
( a~wl _ a%,

A:. ~+-ALo ~i+2NZU0axay)1— =0 (17)

If the radius is taken intlnite, equation (17) becomes
equivalent to equation (71) of reference 4.

Isotropic curved pIate, deflections due to shear neg-
lected.—The present theory can be reduced to a kuown
theory for ordinary curved plates by appropriate substitu-
tions for the physioal constants. For an ordinary pIate, the
physicxd constants become

D~== Dew= co (no shear deflections)

P.= PU=P’Z=P’Y=P

D.= Dp=D(l–p~

Da=D (1–p)

E== EH=Et

Q.= ‘t
‘(1+#)
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Upon substitution of these constants into equation (14),
the resulting equation becomes independent of equations
(7) and (8) and the equilibrium equation of the ordinary
curved pIate, therefore, is gi-iertby

(18)

Equation (18) is equkdent to the modified equilibrium
equation for ordinary curved pIates presented in reference 7.

CONCLUDING REMARKS

A theory has been de-doped for analyzing the eIast.ic
behavior of orthotropic curved plates, that takes into account
the effect of deflections due to shear and requires the use of
12 physical constants to characterize the pIate. Sewn of ._
the physicaI constants appearing in the equations of equi-
librium sre direot.Iy aesociatcd with the flat-orthotropic-
plate theory prwented in NACA Rep. 899. The remahing
five physical constants are included in the present theory
to account. for the st.retoh@ under Ioading of the middle
surface of the curved plate.

For each type of orthotropic plate, the 12 physical con-
stants may be evaluatcd either horn the geometry of the
cross sections and the properties of the materiaIs used or
by direct teats conducted on sample specimens. Because
two reciprocal relationships exist (see appendk), o~y 1“ ~;
of the constants need be determined independently.

The theory presented in this report does not take into
account the compr-ibility of the sandwich plate in a direc-
tion norrnrdto the faces. Such an effect does not enter into
flat-sandwich-plate theory but might be of importance in
certain types of curved sandwich pkt es where the elastic
constants of the core materkd are small compared with
those of the face material.

For practical sandwiches of the end-grain-balsa or
corrugated-core types, order-of-magnitude considerations Iead
to the conclusion that the effect of core compressibility wilI
be neghgible as regards both buckhng loads and deflections. _
For sandwiches with less SM cores-for example, celhdar
celhdose acetat~the eflect of core compressibility will be
more important. Even for such cores, however, in the case “-
of all the numerical esamples gken in hTACA T37 1832,the
tied of core compressibility is negligible in comparison with
the effect of transverse shear deformations for sandwich-type
circular cylindrical shells. The present theory, in -whichthe
core is assumed to be incompressible in a direction normaI to
the faces, appeam, therefore, to be applicable to most prac-
ticaI saadwich plates.

L4.W3LEY JiEROXAUITCAL LABOKLTORT,

NATIONAL ~DmSORY ~OMMTTEE FOE &!RONAWCS,

L~XGLEYFIELD,VA.,A’orember .%!,I/l.@.



APPENDIX

DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS

The orthotropic curved plate (effects of transverse &ear
being considered) is characterized by 12 physical constants,
7 of which are associated with flat plates, as presented in
reference 3. The remaining five constants enter the present
theory because of the additional stretching strain developed
under loading in the middle surface of the curved plate, In
this appendix the five additional constanta are defied, and
expressions for the resultant forces, involving these con-
stants, me derived.

Physical constants.-The seven flat-plate constants are the
flexural stiffnesses Dz and Du, the flemral Poisson ratios p.
and ~P,the twisting stiffness DZV,and the transverse shear
stiflnessesDo, and ll~r. As derived in reference 3, the first
four of these constants are related by

f.llDu=PJL

The five additional constants appearing in the curved-plate
theory are the extensional stiffneeses E’. and E’,, the
extensional Poisson ratios /= and p’r, and the shearing
stiffness G=, The first four constants are found by a
procedure similar to that used in reference 3 to be related by

/.Jaw=P’vEz

As a result of the9e two reciprocal relationships, only 10 of
the 12 physical constants need be determinedindependently. ”

The five additional physical constants are defined in the
same manner as the flat-plate constants of reference 3—
that is, by considering the effect of imposing particular
loading conditions on the element shown in figure 1. To
obtain Es, for example, only the middle-suxface forces N=
are assumed to be acting on the element. As a result of
this loading, the strain c= is induced in the middle surface.

The stiflness E, is then defined by the relation l?,=%

when only NZ is acting.
The Poisson effect of the forces N= acting on the element

is to introduce a strain ev,negative with respect to c%,in the
middle surface. The constant p’. is then defined by the

relation p’== —Svwhen only N= k acting.

In a similar knner, E’v, ~’v, and Q- are defined as

Ev=~ when ordy ATVis acting, P’v= –~ when only N. is

N.v
acting, and (&=z.

Resultant foroes.—The relations Wween tk elastic
middle-surface straina and forces, satisfying the foregoing
definitions, can be written as

The three strain equations can be solved for AL, NV,and
NWin terms of the strains to give

(A2)

Substituting the expressions for the middle-surface strains
of a cylindrical section in terms of micldle-surface displace-
ments

au
“=z

2)7) w—— __
‘u–by r

into equation (A2) gives

W)

These equations are used in the derivation of the equilib-
rium equations,
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